The Relationship between Zhedanov’s Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case
نویسنده
چکیده
Zhedanov’s algebra AW (3) is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order q-difference operator for the Askey–Wilson polynomials. It is proved that this representation is faithful for a certain quotient of AW (3) such that the Casimir operator is equal to a special constant. Some explicit aspects of the double affine Hecke algebra (DAHA) related to symmetric and non-symmetric Askey–Wilson polynomials are presented and proved without requiring knowledge of general DAHA theory. Finally a central extension of this quotient of AW (3) is introduced which can be embedded in the DAHA by means of the faithful basic representations of both algebras.
منابع مشابه
Zhedanov’s Algebra AW (3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra
This paper builds on the previous paper by the author, where a relationship between Zhedanov’s algebra AW (3) and the double affine Hecke algebra (DAHA) corresponding to the Askey–Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW (3) with an additional relation that the Casimir operator equals an explicit constant. A similar resu...
متن کاملJ un 2 00 8 Zhedanov ’ s algebra AW ( 3 ) and the double affine Hecke algebra in the rank one case . II . The spherical subalgebra
This paper builds on the previous paper by the author, where a relationship between Zhedanov’s algebra AW (3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW (3) with an additional relation that the Casimir operator equals an explicit constant. A similar resu...
متن کاملM ar 2 00 7 The relationship between Zhedanov ’ s algebra AW ( 3 ) and the double affine Hecke algebra in the rank one case
Zhedanov’s algebra AW (3) is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order q-difference operator for the Askey-Wilson polynomials. It is proved that this representation is faithful for a certain quotient of AW (3) such that the Casimir operator is equal to a special constant. Some explicit aspects of the double ...
متن کاملIwahori-hecke Algebras of Sl2 over 2-dimensional Local Fields
Hecke algebras were first studied because of their role in the representation theory of p-adic groups, or algebraic groups over 1-dimensional local fields. There are two important classes of Hecke algebras. One is spherical Hecke algebras attached to maximal compact open subgroups, and the other is Iwahori-Hecke algebras attached to Iwahori subgroups. A spherical Hecke algebra is isomorphic to ...
متن کاملModules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$
Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a new triangular decomposition. Singular vectors of Verma modules are determined using a similar condition with horizontal affine Lie subalgebras, and highest weight modules are described under the condition $c_1>0$ and $c_2=0$.
متن کامل